A conjecture on equitable vertex arboricity of graphs

نویسندگان

  • Xin Zhang
  • Jian-Liang Wu
چکیده

Wu, Zhang and Li [4] conjectured that the set of vertices of any simple graph G can be equitably partitioned into ⌈(∆(G) + 1)/2⌉ subsets so that each of them induces a forest of G. In this note, we prove this conjecture for graphs G with ∆(G) ≥ |G|/2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equitable list point arboricity of graphs

A graph G is list point k-arborable if, whenever we are given a k-list assignment L(v) of colors for each vertex v ∈ V(G), we can choose a color c(v) ∈ L(v) for each vertex v so that each color class induces an acyclic subgraph of G, and is equitable list point k-arborable if G is list point k-arborable and each color appears on at most ⌈|V(G)|/k⌉ vertices of G. In this paper, we conjecture tha...

متن کامل

On list vertex 2-arboricity of toroidal graphs without cycles of specific length

The vertex arboricity $rho(G)$ of a graph $G$ is the minimum number of subsets into which the vertex set $V(G)$ can be partitioned so that each subset induces an acyclic graph‎. ‎A graph $G$ is called list vertex $k$-arborable if for any set $L(v)$ of cardinality at least $k$ at each vertex $v$ of $G$‎, ‎one can choose a color for each $v$ from its list $L(v)$ so that the subgraph induced by ev...

متن کامل

Equitable vertex arboricity of planar graphs

Let G1 be a planar graph such that all cycles of length at most 4 are independent and let G2 be a planar graph without 3-cycles and adjacent 4-cycles. It is proved that the set of vertices of G1 and G2 can be equitably partitioned into t subsets for every t ≥ 3 so that each subset induces a forest. These results partially confirm a conjecture of Wu, Zhang

متن کامل

Equitable vertex arboricity of graphs

An equitable (t, k, d)-tree-coloring of a graph G is a coloring to vertices of G such that the sizes of any two color classes differ by at most one and the subgraph induced by each color class is a forest of maximum degree at most k and diameter at most d. The minimum t such that G has an equitable (t′, k, d)-tree-coloring for every t′ ≥ t is called the strong equitable (k, d)-vertex-arboricity...

متن کامل

Large Induced Outerplanar and Acyclic Subgraphs of Planar Graphs

Albertson and Berman [1] conjectured that every planar graph has an induced forest on half of its vertices; the current best result, due to Borodin [3], is an induced forest on two fifths of the vertices. We show that the Albertson-Berman conjecture holds, and is tight, for planar graphs of treewidth 3 (and, in fact, for any graph of treewidth at most 3). We also improve on Borodin’s bound for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1211.4998  شماره 

صفحات  -

تاریخ انتشار 2012